DeepAI AI Chat
Log In Sign Up

Smoothed Analysis of Edge Elimination for Euclidean TSP

09/27/2018
by   Xianghui Zhong, et al.
0

One way to speed up the calculation of optimal TSP tours in practice is eliminating edges that are certainly not in the optimal tour as a preprocessing step. In order to do so several edge elimination approaches have been proposed in the past. In this work we investigate two of them in the scenario where the input consists of n independently distributed random points with bounded density function from above and below by arbitrary positive constants. We show that after the edge elimination procedure of Hougardy and Schroeder the expected number of remaining edges is Θ(n), while after that of Jonker and Volgenant the expected number of remaining edges is Θ(n^2).

READ FULL TEXT
09/27/2018

Probabilistic Analysis of Edge Elimination for Euclidean TSP

One way to speed up the calculation of optimal TSP tours in practice is ...
10/13/2016

Upper bound for effective differential elimination

We present an upper bound for the number of differentiations in differen...
02/11/2016

Network of Bandits insure Privacy of end-users

In order to distribute the best arm identification task as close as poss...
03/06/2020

On the equivalence of the Hermitian eigenvalue problem and hypergraph edge elimination

It is customary to identify sparse matrices with the corresponding adjac...
02/13/2013

Bucket Elimination: A Unifying Framework for Several Probabilistic Inference

Probabilistic inference algorithms for finding the most probable explana...
03/22/2022

Merging Knockout and Round-Robin Tournaments: A Flexible Linear Elimination Tournament Design

We propose a new tournament structure that combines the popular knockout...