Smooth Q-learning: Accelerate Convergence of Q-learning Using Similarity

06/02/2021 ∙ by Wei Liao, et al. ∙ 0

An improvement of Q-learning is proposed in this paper. It is different from classic Q-learning in that the similarity between different states and actions is considered in the proposed method. During the training, a new updating mechanism is used, in which the Q value of the similar state-action pairs are updated synchronously. The proposed method can be used in combination with both tabular Q-learning function and deep Q-learning. And the results of numerical examples illustrate that compared to the classic Q-learning, the proposed method has a significantly better performance.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.