Small Memory Robust Simulation of Client-Server Interactive Protocols over Oblivious Noisy Channels

10/27/2019
by   T-H. Hubert Chan, et al.
0

We revisit the problem of low-memory robust simulation of interactive protocols over noisy channels. Haeupler [FOCS 2014] considered robust simulation of two-party interactive protocols over oblivious, as well as adaptive, noisy channels. Since the simulation does not need to have fixed communication pattern, the achieved communication rates can circumvent the lower bound proved by Kol and Raz [STOC 2013]. However, a drawback of this approach is that each party needs to remember the whole history of the simulated transcript. In a subsequent manuscript, Haeupler and Resch considered low-memory simulation. The idea was to view the original protocol as a computational DAG and only the identities of the nodes are saved (as opposed to the whole transcript history) for backtracking to reduce memory usage. In this paper, we consider low-memory robust simulation of more general client-server interactive protocols, in which a leader communicates with other members/servers, who do not communicate among themselves; this setting can be applied to information-theoretic multi-server Private Information Retrieval (PIR) schemes. We propose an information-theoretic technique that converts any correct PIR protocol that assumes reliable channels, into a protocol which is both correct and private in the presence of a noisy channel while keeping the space complexity to a minimum. Despite the huge attention that PIR protocols have received in the literature, the existing works assume that the parties communicate using noiseless channels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset