SL-CycleGAN: Blind Motion Deblurring in Cycles using Sparse Learning

11/07/2021
by   Ali Syed Saqlain, et al.
10

In this paper, we introduce an end-to-end generative adversarial network (GAN) based on sparse learning for single image blind motion deblurring, which we called SL-CycleGAN. For the first time in blind motion deblurring, we propose a sparse ResNet-block as a combination of sparse convolution layers and a trainable spatial pooler k-winner based on HTM (Hierarchical Temporal Memory) to replace non-linearity such as ReLU in the ResNet-block of SL-CycleGAN generators. Furthermore, unlike many state-of-the-art GAN-based motion deblurring methods that treat motion deblurring as a linear end-to-end process, we take our inspiration from the domain-to-domain translation ability of CycleGAN, and we show that image deblurring can be cycle-consistent while achieving the best qualitative results. Finally, we perform extensive experiments on popular image benchmarks both qualitatively and quantitatively and achieve the record-breaking PSNR of 38.087 dB on GoPro dataset, which is 5.377 dB better than the most recent deblurring method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset