Skew Gaussian Processes for Classification

05/26/2020
by   Alessio Benavoli, et al.
0

Gaussian processes (GPs) are distributions over functions, which provide a Bayesian nonparametric approach to regression and classification. In spite of their success, GPs have limited use in some applications, for example, in some cases a symmetric distribution with respect to its mean is an unreasonable model. This implies, for instance, that the mean and the median coincide, while the mean and median in an asymmetric (skewed) distribution can be different numbers. In this paper, we propose Skew-Gaussian processes (SkewGPs) as a non-parametric prior over functions. A SkewGP extends the multivariate Unified Skew-Normal distribution over finite dimensional vectors to a stochastic processes. The SkewGP class of distributions includes GPs and, therefore, SkewGPs inherit all good properties of GPs and increase their flexibility by allowing asymmetry in the probabilistic model. By exploiting the fact that SkewGP and probit likelihood are conjugate model, we derive closed form expressions for the marginal likelihood and predictive distribution of this new nonparametric classifier. We verify empirically that the proposed SkewGP classifier provides a better performance than a GP classifier based on either Laplace's method or Expectation Propagation.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 26

10/26/2021

Non-Gaussian Gaussian Processes for Few-Shot Regression

Gaussian Processes (GPs) have been widely used in machine learning to mo...
02/18/2014

Student-t Processes as Alternatives to Gaussian Processes

We investigate the Student-t process as an alternative to the Gaussian p...
01/30/2020

Transport Gaussian Processes for Regression

Gaussian process (GP) priors are non-parametric generative models with a...
11/11/2015

Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation

Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisati...
02/12/2016

Deep Gaussian Processes for Regression using Approximate Expectation Propagation

Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisati...
09/06/2018

Hands-on Experience with Gaussian Processes (GPs): Implementing GPs in Python - I

This document serves to complement our website which was developed with ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.