Sketch-to-Image Generation Using Deep Contextual Completion

11/24/2017
by   Yongyi Lu, et al.
0

When the input to pix2pix translation is a badly drawn sketch, the output follows the input edges due to the strict alignment imposed by the translation process. In this paper we propose sketch-to-image generation, where the output edges do not necessarily follow the input edges. We address the image generation problem using a novel joint image completion approach, where the sketch provides the image context for completing, or generating the output image. We train a deep generative model to learn the joint distribution of sketch and the corresponding image by using joint images. Our deep contextual completion approach has several advantages. First, the simple joint image representation allows for simple and effective definition of losses in the same joint image-sketch space, which avoids complicated issues in cross-domain learning. Second, while the output is related to its input overall, the generated features exhibit more freedom in appearance and do not strictly align with the input features. Third, from the joint image's point of view, image and sketch are of no difference, thus exactly the same deep joint image completion network can be used for image-to-sketch generation. Experiments evaluated on three different datasets show that the proposed approach can generate more realistic images than the state-ofthe- arts on challenging inputs and generalize well on common categories.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset