SkelEx and BoundEx: Natural Visualization of ReLU Neural Networks

05/09/2023
by   Pawel Pukowski, et al.
0

Despite their limited interpretability, weights and biases are still the most popular encoding of the functions learned by ReLU Neural Networks (ReLU NNs). That is why we introduce SkelEx, an algorithm to extract a skeleton of the membership functions learned by ReLU NNs, making those functions easier to interpret and analyze. To the best of our knowledge, this is the first work that considers linear regions from the perspective of critical points. As a natural follow-up, we also introduce BoundEx, which is the first analytical method known to us to extract the decision boundary from the realization of a ReLU NN. Both of those methods introduce very natural visualization tool for ReLU NNs trained on low-dimensional data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset