SkeletonNet: Shape Pixel to Skeleton Pixel

07/02/2019 ∙ by Sabari Nathan, et al. ∙ 0

Deep Learning for Geometric Shape Understating has organized a challenge for extracting different kinds of skeletons from the images of different objects. This competition is organized in association with CVPR 2019. There are three different tracks of this competition. The present manuscript describes the method used to train the model for the dataset provided in the first track. The first track aims to extract skeleton pixels from the shape pixels of 89 different objects. For the purpose of extracting the skeleton, a U-net model which is comprised of an encoder-decoder structure has been used. In our proposed architecture, unlike the plain decoder in the traditional Unet, we have designed the decoder in the format of HED architecture, wherein we have introduced 4 side layers and fused them to one dilation convolutional layer to connect the broken links of the skeleton. Our proposed architecture achieved the F1 score of 0.77 on test data.



There are no comments yet.


page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.