SKDBERT: Compressing BERT via Stochastic Knowledge Distillation

11/26/2022
by   Zixiang Ding, et al.
0

In this paper, we propose Stochastic Knowledge Distillation (SKD) to obtain compact BERT-style language model dubbed SKDBERT. In each iteration, SKD samples a teacher model from a pre-defined teacher ensemble, which consists of multiple teacher models with multi-level capacities, to transfer knowledge into student model in an one-to-one manner. Sampling distribution plays an important role in SKD. We heuristically present three types of sampling distributions to assign appropriate probabilities for multi-level teacher models. SKD has two advantages: 1) it can preserve the diversities of multi-level teacher models via stochastically sampling single teacher model in each iteration, and 2) it can also improve the efficacy of knowledge distillation via multi-level teacher models when large capacity gap exists between the teacher model and the student model. Experimental results on GLUE benchmark show that SKDBERT reduces the size of a BERT_ BASE model by 40 language understanding and being 100

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro