Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model

10/31/2022
by   Mohammad Sarhil, et al.
0

We devote this paper to model the size-effects of metamaterial beams under bending with the aid of the relaxed micromorphic continuum. We analyze first the size-dependent bending stiffness of heterogeneous fully discretized metamaterial beams subjected to pure bending loads. Two equivalent loading schemes are introduced which lead to a constant moment along the beam length with no shear force. The relaxed micromorphic model is employed then to retrieve the size-effects. We present a procedure for the determination of the material parameters of the relaxed micromorphic model based on the fact that the model operates between two well-defined scales. These scales are given by linear elasticity with micro and macro elasticity tensors which bound the relaxed micromorphic continuum from above and below, respectively. The micro elasticity tensor is specified as the maximum possible stiffness that is exhibited by the assumed metamaterial while the macro elasticity tensor is given by standard periodic first-order homogenization. For the identification of the micro elasticity tensor, two different approaches are shown which rely on affine and non-affine Dirichlet boundary conditions of candidate unit cell variants with the possible stiffest response. The consistent coupling condition is shown to allow the model to act on the whole intended range between macro and micro elasticity tensors for both loading cases. Finally, we fit the relaxed micromorphic model against the fully resolved metamaterial solution by controlling the curvature magnitude after linking it with the specimen's size.

READ FULL TEXT
research
01/15/2020

A parabolic local problem with exponential decay of the resonance error for numerical homogenization

This paper aims at an accurate and efficient computation of effective qu...
research
06/09/2019

Simplified Kinematics of Continuum Robot Equilibrium Modulation via Moment Coupling Effects and Model Calibration

Recently, a new concept for continuum robots capable of producing macro-...
research
03/07/2020

Machine learning based non-Newtonian fluid model with molecular fidelity

We introduce a machine-learning-based framework for constructing continu...
research
02/11/2020

Wave propagation modeling in periodic elasto-thermo-diffusive materials via multifield asymptotic homogenization

A multifield asymptotic homogenization technique for periodic thermo-dif...
research
07/01/2016

Design of a high-performance GEMM-like Tensor-Tensor Multiplication

We present "GEMM-like Tensor-Tensor multiplication" (GETT), a novel appr...
research
01/04/2023

Higher order Bernstein-Bézier and Nédélec finite elements for the relaxed micromorphic model

The relaxed micromorphic model is a generalized continuum model that is ...
research
01/04/2021

An efficient monolithic solution scheme for FE^2 problems

The FE^2 method is a very flexible but computationally expensive tool fo...

Please sign up or login with your details

Forgot password? Click here to reset