Single Run Action Detector over Video Stream – A Privacy Preserving Approach

02/05/2021
by   Anbumalar Saravanan, et al.
0

This paper takes initial strides at designing and evaluating a vision-based system for privacy ensured activity monitoring. The proposed technology utilizing Artificial Intelligence (AI)-empowered proactive systems offering continuous monitoring, behavioral analysis, and modeling of human activities. To this end, this paper presents Single Run Action Detector (S-RAD) which is a real-time privacy-preserving action detector that performs end-to-end action localization and classification. It is based on Faster-RCNN combined with temporal shift modeling and segment based sampling to capture the human actions. Results on UCF-Sports and UR Fall dataset present comparable accuracy to State-of-the-Art approaches with significantly lower model size and computation demand and the ability for real-time execution on edge embedded device (e.g. Nvidia Jetson Xavier).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro