DeepAI AI Chat
Log In Sign Up

SINGA-Easy: An Easy-to-Use Framework for MultiModal Analysis

by   Naili Xing, et al.
National University of Singapore
Zhejiang University
Beijing Institute of Technology

Deep learning has achieved great success in a wide spectrum of multimedia applications such as image classification, natural language processing and multimodal data analysis. Recent years have seen the development of many deep learning frameworks that provide a high-level programming interface for users to design models, conduct training and deploy inference. However, it remains challenging to build an efficient end-to-end multimedia application with most existing frameworks. Specifically, in terms of usability, it is demanding for non-experts to implement deep learning models, obtain the right settings for the entire machine learning pipeline, manage models and datasets, and exploit external data sources all together. Further, in terms of adaptability, elastic computation solutions are much needed as the actual serving workload fluctuates constantly, and scaling the hardware resources to handle the fluctuating workload is typically infeasible. To address these challenges, we introduce SINGA-Easy, a new deep learning framework that provides distributed hyper-parameter tuning at the training stage, dynamic computational cost control at the inference stage, and intuitive user interactions with multimedia contents facilitated by model explanation. Our experiments on the training and deployment of multi-modality data analysis applications show that the framework is both usable and adaptable to dynamic inference loads. We implement SINGA-Easy on top of Apache SINGA and demonstrate our system with the entire machine learning life cycle.


page 3

page 8


Chainer: A Deep Learning Framework for Accelerating the Research Cycle

Software frameworks for neural networks play a key role in the developme...

Model Slicing for Supporting Complex Analytics with Elastic Inference Cost and Resource Constraints

Deep learning models have been used to support analytics beyond simple a...

Scaling Vision-Language Models with Sparse Mixture of Experts

The field of natural language processing (NLP) has made significant stri...

Barista - a Graphical Tool for Designing and Training Deep Neural Networks

In recent years, the importance of deep learning has significantly incre...

Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework

Deep Learning has made a great progress for these years. However, it is ...

Deep learning pipeline for image classification on mobile phones

This article proposes and documents a machine-learning framework and tut...

SOLIS – The MLOps journey from data acquisition to actionable insights

Machine Learning operations is unarguably a very important and also one ...