Simultaneous Consensus Maximization and Model Fitting

08/04/2020
by   Fei Wen, et al.
0

Maximum consensus (MC) robust fitting is a fundamental problem in low-level vision to process raw-data. Typically, it firstly finds a consensus set of inliers and then fits a model on the consensus set. This work proposes a new formulation to achieve simultaneous maximum consensus and model estimation (MCME), which has two significant features compared with traditional MC robust fitting. First, it takes fitting residual into account in finding inliers, hence its lowest achievable residual in model fitting is lower than that of MC robust fitting. Second, it has an unconstrained formulation involving binary variables, which facilitates the use of the effective semidefinite relaxation (SDR) method to handle the underlying challenging combinatorial optimization problem. Though still nonconvex after SDR, it becomes biconvex in some applications, for which we use an alternating minimization algorithm to solve. Further, the sparsity of the problem is exploited in combination with low-rank factorization to develop an efficient algorithm. Experiments show that MCME significantly outperforms RANSAC and deterministic approximate MC methods at high outlier ratios. Besides, in rotation and Euclidean registration, it also compares favorably with state-of-the-art registration methods, especially in high noise and outliers. Code is available at https://github.com/FWen/mcme.git.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset