Simultaneous Approximation of Measurement Values and Derivative Data using Discrete Orthogonal Polynomials

03/26/2019
by   Roland Ritt, et al.
0

This paper presents a novel method for polynomial approximation (Hermite approximation) using the fusion of value and derivative information. Therefore, the least-squares error in both domains is simultaneously minimized. A covariance weighting is used to introduce a metric between the value and derivative domain, to handle different noise behaviour. Based on a recurrence relation with full re-orthogonalization, a weighted polynomial basis function set is generated. This basis is numerically more stable compared to other algorithms, making it suitable for the approximation of data with high degree polynomials. With the new method, the fitting problem can be solved using inner products instead of matrix-inverses, yielding a computational more efficient method, e.g., for real-time approximation. A Monte Carlo simulation is performed on synthetic data, demonstrating the validity of the method. Additionally, various tests on the basis function set are presented, showing the improvement on the numerical stability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro