Simulations for Validation of Vision Systems

12/03/2015
by   V S R Veeravasarapu, et al.
0

As the computer vision matures into a systems science and engineering discipline, there is a trend in leveraging latest advances in computer graphics simulations for performance evaluation, learning, and inference. However, there is an open question on the utility of graphics simulations for vision with apparently contradicting views in the literature. In this paper, we place the results from the recent literature in the context of performance characterization methodology outlined in the 90's and note that insights derived from simulations can be qualitative or quantitative depending on the degree of fidelity of models used in simulation and the nature of the question posed by the experimenter. We describe a simulation platform that incorporates latest graphics advances and use it for systematic performance characterization and trade-off analysis for vision system design. We verify the utility of the platform in a case study of validating a generative model inspired vision hypothesis, Rank-Order consistency model, in the contexts of global and local illumination changes, and bad weather, and high-frequency noise. Our approach establishes the link between alternative viewpoints, involving models with physics based semantics and signal and perturbation semantics and confirms insights in literature on robust change detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset