Simulation of 3D elasto-acoustic wave propagation based on a Discontinuous Galerkin Spectral Element method

07/11/2019 ∙ by Paola F. Antonietti, et al. ∙ 0

In this paper we present a numerical discretization of the coupled elasto-acoustic wave propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) approach in a three-dimensional setting. The unknowns of the coupled problem are the displacement field and the velocity potential, in the elastic and the acoustic domains, respectively, thereby resulting in a symmetric formulation. After stating the main theoretical results, we assess the performance of the method by convergence tests carried out on both matching and non-matching grids, and we simulate realistic scenarios where elasto-acoustic coupling occurs. In particular, we consider the case of Scholte waves and the scattering of elastic waves by an underground acoustic cavity. Numerical simulations are carried out by means of the code SPEED, available at



There are no comments yet.


page 13

page 16

page 17

page 18

page 19

page 20

page 21

page 22

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.