Simple, Robust and Optimal Ranking from Pairwise Comparisons

12/30/2015
by   Nihar B. Shah, et al.
0

We consider data in the form of pairwise comparisons of n items, with the goal of precisely identifying the top k items for some value of k < n, or alternatively, recovering a ranking of all the items. We analyze the Copeland counting algorithm that ranks the items in order of the number of pairwise comparisons won, and show it has three attractive features: (a) its computational efficiency leads to speed-ups of several orders of magnitude in computation time as compared to prior work; (b) it is robust in that theoretical guarantees impose no conditions on the underlying matrix of pairwise-comparison probabilities, in contrast to some prior work that applies only to the BTL parametric model; and (c) it is an optimal method up to constant factors, meaning that it achieves the information-theoretic limits for recovering the top k-subset. We extend our results to obtain sharp guarantees for approximate recovery under the Hamming distortion metric, and more generally, to any arbitrary error requirement that satisfies a simple and natural monotonicity condition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset