Simple And Efficient Architecture Search for Convolutional Neural Networks

11/13/2017
by   Thomas Elsken, et al.
0

Neural networks have recently had a lot of success for many tasks. However, neural network architectures that perform well are still typically designed manually by experts in a cumbersome trial-and-error process. We propose a new method to automatically search for well-performing CNN architectures based on a simple hill climbing procedure whose operators apply network morphisms, followed by short optimization runs by cosine annealing. Surprisingly, this simple method yields competitive results, despite only requiring resources in the same order of magnitude as training a single network. E.g., on CIFAR-10, our method designs and trains networks with an error rate below 6 hours on a single GPU; training for one day reduces this error further, to almost 5

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset