Similarities between policy gradient methods (PGM) in Reinforcement learning (RL) and supervised learning (SL)

04/12/2019
by   Eric Benhamou, et al.
0

Reinforcement learning (RL) is about sequential decision making and is traditionally opposed to supervised learning (SL) and unsupervised learning (USL). In RL, given the current state, the agent makes a decision that may influence the next state as opposed to SL (and USL) where, the next state remains the same, regardless of the decisions taken, either in batch or online learning. Although this difference is fundamental between SL and RL, there are connections that have been overlooked. In particular, we prove in this paper that gradient policy method can be cast as a supervised learning problem where true label are replaced with discounted rewards. We provide a new proof of policy gradient methods (PGM) that emphasizes the tight link with the cross entropy and supervised learning. We provide a simple experiment where we interchange label and pseudo rewards. We conclude that other relationships with SL could be made if we modify the reward functions wisely.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset