ShuttleSet22: Benchmarking Stroke Forecasting with Stroke-Level Badminton Dataset
In recent years, badminton analytics has drawn attention due to the advancement of artificial intelligence and the efficiency of data collection. While there is a line of effective applications to improve and investigate player performance, there are only a few public badminton datasets that can be used for researchers outside the badminton domain. Existing badminton singles datasets focus on specific matchups; however, they cannot provide comprehensive studies on different players and various matchups. In this paper, we provide a badminton singles dataset, ShuttleSet22, which is collected from high-ranking matches in 2022. ShuttleSet22 consists of 30,172 strokes in 2,888 rallies in the training set, 1,400 strokes in 450 rallies in the validation set, and 2,040 strokes in 654 rallies in the testing set with detailed stroke-level metadata within a rally. To benchmark existing work with ShuttleSet22, we test the state-of-the-art stroke forecasting approach, ShuttleNet, with the corresponding stroke forecasting task, i.e., predict the future strokes based on the given strokes of each rally. We also hold a challenge, Track 2: Forecasting Future Turn-Based Strokes in Badminton Rallies, at CoachAI Badminton Challenge 2023 to boost researchers to tackle this problem. The baseline codes and the dataset will be made available on https://github.com/wywyWang/CoachAI-Projects/tree/main/CoachAI-Challenge-IJCAI2023.
READ FULL TEXT