Shortcomings of Counterfactual Fairness and a Proposed Modification

11/14/2020
by   Fabian Beigang, et al.
0

In this paper, I argue that counterfactual fairness does not constitute a necessary condition for an algorithm to be fair, and subsequently suggest how the constraint can be modified in order to remedy this shortcoming. To this end, I discuss a hypothetical scenario in which counterfactual fairness and an intuitive judgment of fairness come apart. Then, I turn to the question how the concept of discrimination can be explicated in order to examine the shortcomings of counterfactual fairness as a necessary condition of algorithmic fairness in more detail. I then incorporate the insights of this analysis into a novel fairness constraint, causal relevance fairness, which is a modification of the counterfactual fairness constraint that seems to circumvent its shortcomings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro