Short Text Classification Improved by Feature Space Extension

04/02/2019
by   Yanxuan Li, et al.
0

With the explosive development of mobile Internet, short text has been applied extensively. The difference between classifying short text and long documents is that short text is of shortness and sparsity. Thus, it is challenging to deal with short text classification owing to its less semantic information. In this paper, we propose a novel topic-based convolutional neural network (TB-CNN) based on Latent Dirichlet Allocation (LDA) model and convolutional neural network. Comparing to traditional CNN methods, TB-CNN generates topic words with LDA model to reduce the sparseness and combines the embedding vectors of topic words and input words to extend feature space of short text. The validation results on IMDB movie review dataset show the improvement and effectiveness of TB-CNN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro