Short Presburger arithmetic is hard

08/28/2017
by   Danny Nguyen, et al.
0

We study the computational complexity of short sentences in Presburger arithmetic (Short-PA). Here by "short" we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integer coefficients involved in the linear inequalities. We prove that satisfiability of Short-PA sentences with m+2 alternating quantifiers is Σ_P^m-complete or Π_P^m-complete, when the first quantifier is ∃ or ∀, respectively. Counting versions and restricted systems are also analyzed. Further application are given to hardness of two natural problems in Integer Optimizations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset