SHIELD: Secure Haplotype Imputation Employing Local Differential Privacy

09/13/2023
by   Marc Harary, et al.
0

We introduce Secure Haplotype Imputation Employing Local Differential privacy (SHIELD), a program for accurately estimating the genotype of target samples at markers that are not directly assayed by array-based genotyping platforms while preserving the privacy of donors to public reference panels. At the core of SHIELD is the Li-Stephens model of genetic recombination, according to which genomic information is comprised of mosaics of ancestral haplotype fragments that coalesce via a Markov random field. We use the standard forward-backward algorithm for inferring the ancestral haplotypes of target genomes, and hence the most likely genotype at unobserved sites, using a reference panel of template haplotypes whose privacy is guaranteed by the randomized response technique from differential privacy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro