Sheaves: A Topological Approach to Big Data

01/04/2019
by   Linas Vepstas, et al.
1

This document develops general concepts useful for extracting knowledge embedded in large graphs or datasets that have pair-wise relationships, such as cause-effect-type relations. Almost no underlying assumptions are made, other than that the data can be presented in terms of pair-wise relationships between objects/events. This assumption is used to mine for patterns in the dataset, defining a reduced graph or dataset that boils-down or concentrates information into a more compact form. The resulting extracted structure or set of patterns are manifestly symbolic in nature, as they capture and encode the graph structure of the dataset in terms of a (generative) grammar. This structure is identified as having the formal mathematical structure of a sheaf. In essence, this paper introduces the basic concepts of sheaf theory into the domain of graphical datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset