Sharp adaptive similarity testing with pathwise stability for ergodic diffusions

03/25/2022
by   Johannes Brutsche, et al.
0

Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift b to some reference drift b_0: At prescribed significance, we simultaneously identify those regions where violation from similiarity occurs, without a priori knowledge of their number, size and location. This test is shown to be minimax-optimal and adaptive. At the same time, the procedure is robust under small deviation from Brownian motion as the driving noise process. A detailed investigation for fractional driving noise, which is neither a semimartingale nor a Markov process, is provided for Hurst indices close to the Brownian motion case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro