Shared Information for a Markov Chain on a Tree

07/29/2023
by   Sagnik Bhattacharya, et al.
0

Shared information is a measure of mutual dependence among multiple jointly distributed random variables with finite alphabets. For a Markov chain on a tree with a given joint distribution, we give a new proof of an explicit characterization of shared information. The Markov chain on a tree is shown to possess a global Markov property based on graph separation; this property plays a key role in our proofs. When the underlying joint distribution is not known, we exploit the special form of this characterization to provide a multiarmed bandit algorithm for estimating shared information, and analyze its error performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro