Shape Interaction Matrix Revisited and Robustified: Efficient Subspace Clustering with Corrupted and Incomplete Data

09/09/2015 ∙ by Pan Ji, et al. ∙ 0

The Shape Interaction Matrix (SIM) is one of the earliest approaches to performing subspace clustering (i.e., separating points drawn from a union of subspaces). In this paper, we revisit the SIM and reveal its connections to several recent subspace clustering methods. Our analysis lets us derive a simple, yet effective algorithm to robustify the SIM and make it applicable to realistic scenarios where the data is corrupted by noise. We justify our method by intuitive examples and the matrix perturbation theory. We then show how this approach can be extended to handle missing data, thus yielding an efficient and general subspace clustering algorithm. We demonstrate the benefits of our approach over state-of-the-art subspace clustering methods on several challenging motion segmentation and face clustering problems, where the data includes corrupted and missing measurements.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 9

page 10

page 11

page 12

page 13

page 14

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.