Shape and parameter identification by the linear sampling method for a restricted Fourier integral operator

06/28/2023
by   Shixu Meng, et al.
0

In this paper we report our new finding on the linear sampling and factorization methods: in addition to shape identification, the linear sampling and factorization methods have capability in parameter identification. Our demonstration is for shape/parameter identification associated with a restricted Fourier integral operator which arises from the multi-frequency inverse source problem for a fixed observation direction and the Born inverse scattering problems. Within the framework of linear sampling method, we develop both a shape identification theory and a parameter identification theory which are stimulated, analyzed, and implemented with the help of the prolate spheroidal wave functions and their generalizations. Both the shape and parameter identification theories are general, since the theories allow any general regularization scheme such as the Tikhonov or the singular value cut off regularization. We further propose a prolate-Galerkin formulation of the linear sampling method for implementation and provide numerical experiments to demonstrate how the linear sampling method is capable of reconstructing both the shape and the parameter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset