SfSNet : Learning Shape, Reflectance and Illuminance of Faces in the Wild

12/02/2017
by   Soumyadip Sengupta, et al.
0

We present SfSNet, an end-to-end learning framework for producing an accurate decomposition of an unconstrained image of a human face into shape, reflectance and illuminance. Our network is designed to reflect a physical lambertian rendering model. SfSNet learns from a mixture of labeled synthetic and unlabeled real world images. This allows the network to capture low frequency variations from synthetic images and high frequency details from real images through the photometric reconstruction loss. SfSNet consists of a new decomposition architecture with residual blocks that learns a complete separation of albedo and normal. This is used along with the original image to predict lighting. SfSNet produces significantly better quantitative and qualitative results than state-of-the-art methods for inverse rendering and independent normal and illumination estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset