Sequential Search Models: A Pairwise Maximum Rank Approach

04/28/2021 ∙ by Jiarui Liu, et al. ∙ 0

This paper studies sequential search models that (1) incorporate unobserved product quality, which can be correlated with endogenous observable characteristics (such as price) and endogenous search cost variables (such as product rankings in online search intermediaries); and (2) do not require researchers to know the true distribution of the match value between consumers and products. A likelihood approach to estimate such models gives biased results. Therefore, I propose a new estimator – pairwise maximum rank (PMR) estimator – for both preference and search cost parameters. I show that the PMR estimator is consistent using only data on consumers' search order among one pair of products rather than data on consumers' full consideration set or final purchase. Additionally, we can use the PMR estimator to test for the true match value distribution in the data. In the empirical application, I apply the PMR estimator to quantify the effect of rankings in Expedia hotel search using two samples of the data set, to which consumers are randomly assigned. I find the position effect to be $0.11-$0.36, and the effect estimated using the sample with randomly generated rankings is close to the effect estimated using the sample with endogenous rankings. Moreover, I find that the true match value distribution in the data is unlikely to be N(0,1). Likelihood estimation ignoring endogeneity gives an upward bias of at least $1.17; misspecification of match value distribution as N(0,1) gives an upward bias of at least $2.99.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.