Sequential Model Selection Method for Nonparametric Autoregression

09/06/2018
by   Ouerdia Arkoun, et al.
0

In this paper for the first time the nonparametric autoregression estimation problem for the quadratic risks is considered. To this end we develop a new adaptive sequential model selection method based on the efficient sequential kernel estimators proposed by Arkoun and Pergamenshchikov (2016). Moreover, we develop a new analytical tool for general regression models to obtain the non asymptotic sharp or- acle inequalities for both usual quadratic and robust quadratic risks. Then, we show that the constructed sequential model selection proce- dure is optimal in the sense of oracle inequalities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro