Sequential games and nondeterministic selection functions
This paper analyses Escardó and Oliva's generalisation of selection functions over a strong monad from a game-theoretic perspective. We focus on the case of the nondeterminism (finite nonempty powerset) monad . We use these nondeterministic selection functions of type ^_R X = (X→ R)→(X) to study sequential games, extending previous work linking (deterministic) selection functions to game theory. Similar to deterministic selection functions, which compute a subgame perfect Nash equilibrium play of a game, we characterise those non-deterministic selection functions which have a clear game-theoretic interpretation. Surprisingly, we show no non-deterministic selection function exists which computes the set of all subgame perfect Nash equilibrium plays. Instead we show that there are selection functions corresponding to sequential versions of the iterated removal of strongly and weakly dominated strategies.
READ FULL TEXT