Sequence Modeling using Gated Recurrent Neural Networks

01/01/2015
by   Mohammad Pezeshki, et al.
0

In this paper, we have used Recurrent Neural Networks to capture and model human motion data and generate motions by prediction of the next immediate data point at each time-step. Our RNN is armed with recently proposed Gated Recurrent Units which has shown promising results in some sequence modeling problems such as Machine Translation and Speech Synthesis. We demonstrate that this model is able to capture long-term dependencies in data and generate realistic motions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset