Sentiment Analysis and Effect of COVID-19 Pandemic using College SubReddit Data

by   Tian Yan, et al.

The COVID-19 pandemic has affected societies and human health and well-being in various ways. In this study, we collected Reddit data from 2019 (pre-pandemic) and 2020 (pandemic) from the subreddits communities associated with 8 universities, applied natural language processing (NLP) techniques, and trained graphical neural networks with social media data, to study how the pandemic has affected people's emotions and psychological states compared to the pre-pandemic era. Specifically, we first applied a pre-trained Robustly Optimized BERT pre-training approach (RoBERTa) to learn embedding from the semantic information of Reddit messages and trained a graph attention network (GAT) for sentiment classification. The usage of GAT allows us to leverage the relational information among the messages during training. We then applied subgroup-adaptive model stacking to combine the prediction probabilities from RoBERTa and GAT to yield the final classification on sentiment. With the manually labeled and model-predicted sentiment labels on the collected data, we applied a generalized linear mixed-effects model to estimate the effects of pandemic and online teaching on people's sentiment in a statistically significant manner. The results suggest the odds of negative sentiments in 2020 is 14.6% higher than the odds in 2019 (p-value <0.001), and the odds of negative sentiments are 41.6% higher with in-person teaching than with online teaching in 2020 (p-value =0.037) in the studied population.


page 1

page 2

page 3

page 4


Has Sentiment Returned to the Pre-pandemic Level? A Sentiment Analysis Using U.S. College Subreddit Data from 2019 to 2022

As impact of COVID-19 pandemic winds down, both individuals and society ...

COVID-19 Pandemic: Identifying Key Issues using Social Media and Natural Language Processing

The COVID-19 pandemic has affected people's lives in many ways. Social m...

Utilizing distilBert transformer model for sentiment classification of COVID-19's Persian open-text responses

The COVID-19 pandemic has caused drastic alternations in human life in a...

Addressing machine learning concept drift reveals declining vaccine sentiment during the COVID-19 pandemic

Social media analysis has become a common approach to assess public opin...

An NLP-Assisted Bayesian Time Series Analysis for Prevalence of Twitter Cyberbullying During the COVID-19 Pandemic

COVID-19 has brought about many changes in social dynamics. Stay-at-home...

Coronavirus statistics causes emotional bias: a social media text mining perspective

While COVID-19 has impacted humans for a long time, people search the we...

Please sign up or login with your details

Forgot password? Click here to reset