Sentence-Permuted Paragraph Generation

04/15/2021 ∙ by Wenhao Yu, et al. ∙ 0

Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, decoding, and candidate ranking in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

Code Repositories

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.