Sensor-based Planning and Control for Robotic Systems: Introducing Clarity and Perceivability

04/05/2023
by   Devansh R. Agrawal, et al.
0

We introduce an information measure, termed clarity, motivated by information entropy, and show that it has intuitive properties relevant to dynamic coverage control and informative path planning. Clarity defines the quality of the information we have about a variable of interest in an environment on a scale of [0, 1], and has useful properties for control and planning such as: (I) clarity lower bounds the expected estimation error of any estimator, and (II) given noisy measurements, clarity monotonically approaches a level q_infty < 1. We establish a connection between coverage controllers and information theory via clarity, suggesting a coverage model that is physically consistent with how information is acquired. Next, we define the notion of perceivability of an environment under a given robotic (or more generally, sensing and control) system, i.e., whether the system has sufficient sensing and actuation capabilities to gather desired information. We show that perceivability relates to the reachability of an augmented system, and derive the corresponding Hamilton-Jacobi-Bellman equations to determine perceivability. In simulations, we demonstrate how clarity is a useful concept for planning trajectories, how perceivability can be determined using reachability analysis, and how a Control Barrier Function (CBF) based controller can dramatically reduce the computational burden.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset