Semitotal Domination: New hardness results and a polynomial-time algorithm for graphs of bounded mim-width

10/16/2018 ∙ by Esther Galby, et al. ∙ 0

A semitotal dominating set of a graph G with no isolated vertex is a dominating set D of G such that every vertex in D is within distance two of another vertex in D. The minimum size γ_t2(G) of a semitotal dominating set of G is squeezed between the domination number γ(G) and the total domination number γ_t(G). Semitotal Dominating Set is the problem of finding, given a graph G, a semitotal dominating set of G of size γ_t2(G). In this paper, we continue the systematic study on the computational complexity of this problem when restricted to special graph classes. In particular, we show that it is solvable in polynomial time for the class of graphs with bounded mim-width by a reduction to Total Dominating Set and we provide several approximation lower bounds for subclasses of subcubic graphs. Moreover, we obtain complexity dichotomies in monogenic classes for the decision versions of Semitotal Dominating Set and Total Dominating Set. Finally, we show that it is NP-complete to recognise the graphs such that γ_t2(G) = γ_t(G) and those such that γ(G) = γ_t2(G), even if restricted to be planar and with maximum degree at most 4, and we provide forbidden induced subgraph characterisations for the graphs heriditarily satisfying either of these two equalities.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.