Semiparametric inference for mixtures of circular data

03/12/2021
by   Claire Lacour, et al.
0

We consider X 1 ,. .. , X n a sample of data on the circle S 1 , whose distribution is a twocomponent mixture. Denoting R and Q two rotations on S 1 , the density of the X i 's is assumed to be g(x) = pf (R –1 x) + (1 – p)f (Q –1 x), where p ∈ (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part θ = (p, R, Q) and the nonparametric part f. The specific problems of identifiability on the circle are studied. A consistent estimator of θ is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro