Semiparametric Best Arm Identification with Contextual Information
We study best-arm identification with a fixed budget and contextual (covariate) information in stochastic multi-armed bandit problems. In each round, after observing contextual information, we choose a treatment arm using past observations and current context. Our goal is to identify the best treatment arm, a treatment arm with the maximal expected reward marginalized over the contextual distribution, with a minimal probability of misidentification. First, we derive semiparametric lower bounds for this problem, where we regard the gaps between the expected rewards of the best and suboptimal treatment arms as parameters of interest, and all other parameters, such as the expected rewards conditioned on contexts, as the nuisance parameters. We then develop the "Contextual RS-AIPW strategy," which consists of the random sampling (RS) rule tracking a target allocation ratio and the recommendation rule using the augmented inverse probability weighting (AIPW) estimator. Our proposed Contextual RS-AIPW strategy is optimal because the upper bound for the probability of misidentification matches the semiparametric lower bound when the budget goes to infinity, and the gaps converge to zero.
READ FULL TEXT