Semi-supervisedly Co-embedding Attributed Networks

10/31/2019 ∙ by Zaiqiao Meng, et al. ∙ 0

Deep generative models (DGMs) have achieved remarkable advances. Semi-supervised variational auto-encoders (SVAE) as a classical DGM offer a principled framework to effectively generalize from small labelled data to large unlabelled ones, but it is difficult to incorporate rich unstructured relationships within the multiple heterogeneous entities. In this paper, to deal with the problem, we present a semi-supervised co-embedding model for attributed networks (SCAN) based on the generalized SVAE for heterogeneous data, which collaboratively learns low-dimensional vector representations of both nodes and attributes for partially labelled attributed networks semi-supervisedly. The node and attribute embeddings obtained in a unified manner by our SCAN can benefit for capturing not only the proximities between nodes but also the affinities between nodes and attributes. Moreover, our model also trains a discriminative network to learn the label predictive distribution of nodes. Experimental results on real-world networks demonstrate that our model yields excellent performance in a number of applications such as attribute inference, user profiling and node classification compared to the state-of-the-art baselines.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.