Semi-supervised Conditional Density Estimation for Imputation and Classification of Incomplete Instances

06/03/2021
by   Buliao Huang, et al.
0

Incomplete instances with various missing attributes in many real-world scenes have brought challenges to the classification task. There are some missing values imputation methods to fill the missing values with substitute values before classification. However, the separation between imputation and classification may lead to inferior performance since label information are ignored during imputation. Moreover, these imputation methods tend to initialize these missing values with strong prior assumptions, while the unreliability of such initialization is rarely considered. To tackle these problems, a novel semi-supervised conditional normalizing flow (SSCFlow) is proposed in this paper. SSCFlow explicitly utilizes the observed labels to facilitate the imputation and classification simultaneously by employing a semi-supervised algorithm to estimate the conditional probability density of missing values. Moreover, SSCFlow takes the initialized missing values as corrupted initial imputation and iteratively reconstructs their latent representations with an overcomplete denoising autoencoder to approximate the true conditional probability density of missing values. Experiments have been conducted with real-world datasets to demonstrate the robustness and efficiency of the proposed algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro