Semi-Supervised Classification on Non-Sparse Graphs Using Low-Rank Graph Convolutional Networks

05/24/2019 ∙ by Dominik Alfke, et al. ∙ 0

Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised learning on graph-based datasets. For sparse graphs, linear and polynomial filter functions have yielded impressive results. For large non-sparse graphs, however, network training and evaluation becomes prohibitively expensive. By introducing low-rank filters, we gain significant runtime acceleration and simultaneously improved accuracy. We further propose an architecture change mimicking techniques from Model Order Reduction in what we call a reduced-order GCN. Moreover, we present how our method can also be applied to hypergraph datasets and how hypergraph convolution can be implemented efficiently.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.