Semi-Supervised Adversarial Recognition of Refined Window Structures for Inverse Procedural Façade Modeling

by   Han Hu, et al.

Deep learning methods are notoriously data-hungry, which requires a large number of labeled samples. Unfortunately, the large amount of interactive sample labeling efforts has dramatically hindered the application of deep learning methods, especially for 3D modeling tasks, which require heterogeneous samples. To alleviate the work of data annotation for learned 3D modeling of façades, this paper proposed a semi-supervised adversarial recognition strategy embedded in inverse procedural modeling. Beginning with textured LOD-2 (Level-of-Details) models, we use the classical convolutional neural networks to recognize the types and estimate the parameters of windows from image patches. The window types and parameters are then assembled into procedural grammar. A simple procedural engine is built inside an existing 3D modeling software, producing fine-grained window geometries. To obtain a useful model from a few labeled samples, we leverage the generative adversarial network to train the feature extractor in a semi-supervised manner. The adversarial training strategy can also exploit unlabeled data to make the training phase more stable. Experiments using publicly available façade image datasets reveal that the proposed training strategy can obtain about 10 classification accuracy and 50 same network structure. In addition, performance gains are more pronounced when testing against unseen data featuring different façade styles.



page 5

page 8

page 12

page 15

page 16

page 18

page 19

page 20


Semi-Supervised Self-Growing Generative Adversarial Networks for Image Recognition

Image recognition is an important topic in computer vision and image pro...

Fine-Grained Adversarial Semi-supervised Learning

In this paper we exploit Semi-Supervised Learning (SSL) to increase the ...

BiSTF: Bilateral-Branch Self-Training Framework for Semi-Supervised Large-scale Fine-Grained Recognition

Semi-supervised Fine-Grained Recognition is a challenge task due to the ...

Semi-Supervised Learning by Augmented Distribution Alignment

In this work, we propose a simple yet effective semi-supervised learning...

Brain Stroke Lesion Segmentation Using Consistent Perception Generative Adversarial Network

Recently, the state-of-the-art deep learning methods have demonstrated i...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.