Semi-Supervised Active Clustering with Weak Oracles

09/11/2017
by   Taewan Kim, et al.
0

Semi-supervised active clustering (SSAC) utilizes the knowledge of a domain expert to cluster data points by interactively making pairwise "same-cluster" queries. However, it is impractical to ask human oracles to answer every pairwise query. In this paper, we study the influence of allowing "not-sure" answers from a weak oracle and propose algorithms to efficiently handle uncertainties. Different types of model assumptions are analyzed to cover realistic scenarios of oracle abstraction. In the first model, random-weak oracle, an oracle randomly abstains with a certain probability. We also proposed two distance-weak oracle models which simulate the case of getting confused based on the distance between two points in a pairwise query. For each weak oracle model, we show that a small query complexity is adequate for the effective k means clustering with high probability. Sufficient conditions for the guarantee include a γ-margin property of the data, and an existence of a point close to each cluster center. Furthermore, we provide a sample complexity with a reduced effect of the cluster's margin and only a logarithmic dependency on the data dimension. Our results allow significantly less number of same-cluster queries if the margin of the clusters is tight, i.e. γ≈ 1. Experimental results on synthetic data show the effective performance of our approach in overcoming uncertainties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset