Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems

09/08/2019
by   Robert Altmann, et al.
0

We prove first-order convergence of the semi-explicit Euler scheme combined with a finite element discretization in space for elliptic-parabolic problems which are weakly coupled. This setting includes poroelasticity, thermoelasticity, as well as multiple-network models used in medical applications. The semi-explicit approach decouples the system such that each time step requires the solution of two small and well-structured linear systems rather than the solution of one large system. The decoupling improves the computational efficiency without decreasing the convergence rates. The presented convergence proof is based on an interpretation of the scheme as an implicit method applied to a constrained partial differential equation with delay term. Here, the delay time equals the used step size. This connection also allows a deeper understanding of the weak coupling condition, which we accomplish to quantify explicitly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset