Semantic XAI for contextualized demand forecasting explanations

04/01/2021
by   Jože M. Rožanec, et al.
0

The paper proposes a novel architecture for explainable AI based on semantic technologies and AI. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The provided explanations combine concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The knowledge graph provides concepts that convey feature information at a higher abstraction level. By using them, explanations do not expose sensitive details regarding the demand forecasting models. The explanations also emphasize actionable dimensions where suitable. We link domain knowledge, forecasted values, and forecast explanations in a Knowledge Graph. The ontology and dataset we developed for this use case are publicly available for further research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset