Log In Sign Up

Semantic Preserving Embeddings for Generalized Graphs

by   Pedro Almagro-Blanco, et al.

A new approach to the study of Generalized Graphs as semantic data structures using machine learning techniques is presented. We show how vector representations maintaining semantic characteristics of the original data can be obtained from a given graph using neural encoding architectures and considering the topological properties of the graph. Semantic features of these new representations are tested by using some machine learning tasks and new directions on efficient link discovery, entitity retrieval and long distance query methodologies on large relational datasets are investigated using real datasets. ---- En este trabajo se presenta un nuevo enfoque en el contexto del aprendizaje automático multi-relacional para el estudio de Grafos Generalizados. Se muestra cómo se pueden obtener representaciones vectoriales que mantienen características semánticas del grafo original utilizando codificadores neuronales y considerando las propiedades topológicas del grafo. Además, se evalúan las características semánticas capturadas por estas nuevas representaciones y se investigan nuevas metodologías eficientes relacionadas con Link Discovery, Entity Retrieval y consultas a larga distancia en grandes conjuntos de datos relacionales haciendo uso de bases de datos reales.


page 1

page 2

page 3

page 4


Generalized Graph Pattern Matching

Most of the machine learning algorithms are limited to learn from flat d...

Threat Detection for General Social Engineering Attack Using Machine Learning Techniques

This paper explores the threat detection for general Social Engineering ...

Convex Relaxations of SE(2) and SE(3) for Visual Pose Estimation

This paper proposes a new method for rigid body pose estimation based on...

word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data

Vector representations of graphs and relational structures, whether hand...

Crowdsourcing the State of the Art(ifacts)

In any field, finding the "leading edge" of research is an on-going chal...