Semantic Modeling of Textual Relationships in Cross-Modal Retrieval

10/31/2018
by   Jing Yu, et al.
0

Feature modeling of different modalities is a basic problem in current research of cross-modal information retrieval. Existing models typically project texts and images into one embedding space, in which semantically similar information will have a shorter distance. Semantic modeling of textural relationships is notoriously difficult. In this paper, we propose an approach to model texts using a featured graph by integrating multi-view textual relationships including semantic relations, statistical co-occurrence, and prior relations in the knowledge base. A dual-path neural network is adopted to learn multi-modal representations of information and cross-modal similarity measure jointly. We use a Graph Convolutional Network (GCN) for generating relation-aware text representations, and use a Convolutional Neural Network (CNN) with non-linearities for image representations. The cross-modal similarity measure is learned by distance metric learning. Experimental results show that, by leveraging the rich relational semantics in texts, our model can outperform the state-of-the-art models by 3.4 benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro