Semantic Labeling of High Resolution Images Using EfficientUNets and Transformers

by   Hasan AlMarzouqi, et al.

Semantic segmentation necessitates approaches that learn high-level characteristics while dealing with enormous amounts of data. Convolutional neural networks (CNNs) can learn unique and adaptive features to achieve this aim. However, due to the large size and high spatial resolution of remote sensing images, these networks cannot analyze an entire scene efficiently. Recently, deep transformers have proven their capability to record global interactions between different objects in the image. In this paper, we propose a new segmentation model that combines convolutional neural networks with transformers, and show that this mixture of local and global feature extraction techniques provides significant advantages in remote sensing segmentation. In addition, the proposed model includes two fusion layers that are designed to represent multi-modal inputs and output of the network efficiently. The input fusion layer extracts feature maps summarizing the relationship between image content and elevation maps (DSM). The output fusion layer uses a novel multi-task segmentation strategy where class labels are identified using class-specific feature extraction layers and loss functions. Finally, a fast-marching method is used to convert all unidentified class labels to their closest known neighbors. Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.


page 1

page 6

page 8


RiFCN: Recurrent Network in Fully Convolutional Network for Semantic Segmentation of High Resolution Remote Sensing Images

Semantic segmentation in high resolution remote sensing images is a fund...

Feature Fusion through Multitask CNN for Large-scale Remote Sensing Image Segmentation

In recent years, Fully Convolutional Networks (FCN) has been widely used...

Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification

Convolutional neural networks (CNNs) have attracted increasing attention...

Deep learning based cloud detection for remote sensing images by the fusion of multi-scale convolutional features

Cloud detection is an important preprocessing step for the precise appli...

Dynamic Multi-Scale Semantic Segmentation based on Dilated Convolutional Networks

Semantic segmentation requires methods capable of learning high-level fe...

High-Resolution Semantic Labeling with Convolutional Neural Networks

Convolutional neural networks (CNNs) have received increasing attention ...

Please sign up or login with your details

Forgot password? Click here to reset